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Abstract
The SIP  model is a fundamental tool for simulating epidemic dynamics, but it has limitations in
accurately  representing  real-world  scenarios.  This  paper  presents  a  comprehensive  review  and
mathematical  analysis  of  the  SIR  model  when  incorporating  the  incubation  period  of  infectious
diseases. We discuss the significance of the incubation period in disease transmission dynamics
and explore the modifications made to the SIR model to integrate this parameter. By analyzing the
mathematical equations governing the modified SIR model, we demonstrate its enhanced accuracy
in  predicting  disease  spread  patterns  and  its  implications  for  public  health  interventions.  Our
findings evaluated the importance of incorporating the incubation period into epidemic models.
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Аннотация

Модель SIR является фундаментальным инструментом для моделирования эпидемической

динамики, но у нее есть ограничения в точном представлении реальных сценариев. В данной

статье представлено всестороннее обзорное и  математическое аналитическое исследование

модели  SIR  при  включении  инкубационного  периода  инфекционных  заболеваний.  Мы

обсуждаем  значимость  инкубационного  периода  в  динамике  передачи  заболевания  и
исследуем  модификации,  внесенные  в  модель  SIR  для  интеграции  этого  параметра.

Анализируя  математические  уравнения,  определяющие  измененную  модель  SIR,  мы

демонстрируем  ее  улучшенную  точность  в  прогнозировании  паттернов  распространения

болезни  и  ее  влияние  на  меры  общественного  здравоохранения.  Наши  результаты

подчеркивают важность включения инкубационного периода в эпидемические модели.

Ключевые слова:  модель SIR; инкубационный период; эпидемическая динамика; передача

заболевания; математическое моделирование
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INTRODUCTION 

The original SIR model is a fundamental mathematical framework used to study the dynamics  

of infectious diseases within populations. It divides the population into three compartments based on their 

disease status: Susceptible (S), Infectious (I), and Removed (R). Here's a focused and informative 

explanation: 

The Susceptible (S) compartment represents individuals who are susceptible to the disease and can 

become infected upon contact with infectious individuals. The Infectious (I) compartment consists  

of individuals who are currently infected and capable of transmitting the disease to susceptible individuals. 

The Removed (R) compartment includes individuals who have either recovered from the disease and gained 

immunity or have been removed from the population due to death or other reasons. The dynamics of the 

SIR model are governed by a set of ordinary differential equations (ODEs) that describe how the number 

of individuals in each compartment changes over time. These equations capture the flow of individuals 

between compartments based on rates of infection, recovery, and removal. 

In Fig. 1 The incubation period refers to the duration between exposure to a pathogen and the onset 

of symptoms in an infected individual. It represents the time taken for the pathogen to multiply and cause 

detectable signs of illness. In contrast, the latent period specifically denotes the time between infection and 

the individual becoming infectious to others.  

 

 
Fig. 1. Incubation Period Explained 

Рис. 1. Инкубационный период – пояснение 

 

Mathematically, the differential equations for the SIR model can be represented as follows: 

{

𝑑𝑡/𝑑𝑆 = −𝛽𝑆𝐼
𝑑𝑡/𝑑𝐼 = 𝛽𝑆𝐼 − 𝛾𝐼
𝑑𝑡/𝑑𝑅 = 𝛾𝐼

                          (1) 

Where: 

𝑆, 𝐼, and 𝑅 represent the numbers of individuals in the Susceptible, Infectious, and Removed 

compartments, respectively. 

𝑁 is the total population size (𝑁 = 𝑆 + 𝐼 + 𝑅). 
𝛽 is the transmission rate, representing the probability of disease transmission from an infectious 

individual to a susceptible individual per unit time. 

𝛾 is the recovery rate, representing the rate at which infectious individuals recover and move to the 

Removed compartment. 
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LITERATURE REVIEW 

The SIR model, commonly used for simulating epidemics, has several limitations. Firstly, accurately 

inferring model parameters based on early, noisy observations are problematic, limiting its practical 

identifiability [9]. Secondly, the SIR model assumes equal susceptibility and connectivity within age bands, 

leading to overestimation of infection rates [11]. Additionally, the model fails to consider the role of 

nosocomial transmission in overloading health systems, resulting in inaccurate predictions of critical care 

requirements [8]. Furthermore, the SIR model does not account for heterogeneity in contact rates, which 

affects the stability of the epidemic spread in real-world scenarios [2]. 

The incubation period of infectious diseases plays a crucial role in understanding their dynamics. 

Differences in the incubation period can determine the predictability and spread patterns of diseases [3]. 

Diseases with longer incubation periods, such as Ebola, tend to have less predictable spread and more long-

distance sparking events[3] 

Incorporating the incubation period into the SIR model enhances disease spread modeling accuracy 

by accounting for the delay between infection and detection [14]. Understanding the incubation period aids 

in designing effective quarantine and isolation durations, impacting disease control strategies. Moreover, 

considering the incubation period's influence on social distancing measures reveals insights into optimal 

control strategies, emphasizing timing and duration for effective disease containment [12]. 

Incorporating the incubation period into the SIR model is epidemiologically significant as it has 

implications for disease forecasting, intervention planning, and public health policy. The length of the 

incubation period is strongly correlated with disease severity, and accurately estimating the incubation time 

ranges can help establish appropriate quarantine durations, aiding in controlling future 

outbreaks[10].Validation studies have been conducted to assess the accuracy of the modified SIR model 

with an incubation period in simulating real-world disease outbreaks. These studies have demonstrated the 

ability of the modified SIR model to accurately predict the number of beds needed during the early stages 

of an epidemic, such as the COVID-19 outbreak in Wuhan[6,7]. 

The modified SIR model is compared with the classical SIR model in terms of disease dynamics and 

control strategies. The modified model incorporates network structure centrality measures and illness 

factors, while the classical model does not consider these factors. The modified model is found to perform 

better in terms of lowering the final death ratio in the community [1]. Sensitivity analyses have been 

conducted to assess the impact of varying the duration of the incubation period on model outcomes in 

several studies. Sun discusses the importance of good practice sensitivity analysis, including the 

consideration of robustness to choices in methods and assumptions, and the need for convergence of 

sensitivity metrics[16]. 

The incorporation of the incubation period into the SIR model has yielded valuable insights for 

specific infectious diseases such as COVID-19. Liu et al. quantified data irregularity using approximate 

entropy and found higher volatility in the U.S., Italy, and India compared to China 5] . Computational 

methods used to simulate the modified SIR model with an incubation period involve agent-based modeling 

(ABM) and numerical integration techniques such as Euler's method [17]. The SIR model for incorporating 

the incubation period has limitations and assumptions. One limitation is the assumption of homogeneous 

mixing, which assumes that individuals have an equal chance of coming into contact with each other. This 

assumption may not hold in real-world scenarios where individuals have different contact patterns. Another 

limitation is the assumption of constant transmission rates, which assumes that the rate at which individuals 

become infected remains constant over time[13]. 

Future research in infectious disease modeling should focus on refining the modified SIR model by 

incorporating additional factors and integrating real-time data sources. This will enhance the accuracy and 

predictive power of the model, allowing for more effective public health decision-making and outbreak 

response strategies. Incorporating the incubation period into the SIR model has important implications for 

public health. It can provide valuable insights into the timing and progression of outbreaks, enabling the 

development of targeted control measures [6,7]. Numerous lectures, hosted by the Oxford University 
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Department for Continuing Education, have explored the dynamics of the SIR model, which researchers 

have utilized in this paper [18]. 

 

MODEL DEVELOPMENT 

Now, we make an additional assumption to equation 1: the disease has an incubation period equal to 

𝜏. This means that a susceptible individual who comes into contact with an infective and contracts the 

disease would not actually move to the infectious category for a certain period of time labeled 𝜏. We can 

think of this as someone catching the disease from an infectious person, but taking some time before 

displaying symptoms and therefore becoming infectious to others. What this means for our model is that 

variables I and S, which were originally functions of time t, will now become functions of (t-𝜏). Our system 

would appear as follows in equation 2  

                                        

{
 
 

 
 

𝑑𝑆

𝑑𝑡
= −𝑟𝑆(t − τ)𝐼(t − τ)

𝑑𝐼

𝑑𝑡
= 𝑟𝑆(t − τ)𝐼(t − τ) − 𝑎𝐼(𝑡)          

𝑑𝑅

𝑑𝑡
= 𝑎𝐼(𝑡)

.                                         (2) 

As noticed, 𝑎𝐼 hasn’t been changed to 𝑎𝐼(𝑡 − 𝜏) because the assumption of the incubation period 

applies only when transitioning from S to I. The movement from I to R, representing the recovery phase, 

does not incorporate the delay period. In the context of COVID-19, the incubation period is believed to be 

around five days, according to the WHO.  

In Fig. 2, after simulation of equation 2, we noticed that the entire graph shifts in time as you increase 

the incubation period above zero, while the dynamics remain fundamentally the same. 

 

 
r= 1.19                a=0.35         𝜏=0 

 
r= 1.19         a=0.35         𝜏=0 

 

Fig. 2. Classical SIR Model vs Incubation Period Enabled SIR Model 

Рис. 2. Классическая модель SIR и модель SIR с включенным 

инкубационным периодом 
 

 

In the context of COVID-19, the incubation period is relatively short compared to the timescale of 

the disease. This holds true for any disease modeled using the SIR method. Therefore, we have a system of 

equations containing a small parameter, suggesting the use of Taylor expansion. In other words, we aim to 

simplify system equation3 2 into a more manageable form. Thus, we expand equation 1 around t, assuming 

that τ is a small value. 

                              𝑟𝑆(𝑡 − τ)I(t − τ) ≈ rS(t)I(t) + rτ(SI)′ + O(τ2)                                  (3) 

What would we do next is take our approximation in equation 3 and substitute it into equations system 

in 2. 

                                     
𝑑𝑆

𝑑𝑡
= −rS(t)I(t) − 𝑟𝜏(𝐼𝑆)′ + 𝑂(𝜏2)                                                 (4) 
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𝑑𝐼

𝑑𝑡
= 𝑟𝐼𝑆 − 𝑎𝐼 + 𝑟𝜏(𝐼𝑆)′ + 𝑂(𝜏2)                                                    (5) 

                                    
𝑑𝑅

𝑑𝑡
= 𝑎𝐼(𝑡)                                                                                         (6) 

The 𝜏 term which was originally inside our unknown variables through Taylor expansion 

approximation for a small 𝜏 we’ve been write it Infront of something we can now workout. the next step 

involves pretty heavy algebra which is take  (𝐼𝑆)′ term and simplify them into something more manageable. 

we would do this by using the fact that equations in 2 is originally has S’ and I’, they can be substituted for 

S’ and I’ and rearrange to get a simplified expression for (𝐼𝑆)’ 

                                    (𝐼𝑆)′ =
𝐼𝑆(𝑟(𝑆−𝐼)−𝑎)

1−𝑟𝜏(𝐼−𝑆)
                                                                            (7) 

We can call 
(𝑟(𝑆−𝐼)−𝑎)

1−𝑟𝜏(𝐼−𝑆)
 as a 𝑓(𝑟, 𝜏, 𝑎, 𝐼, 𝑆), so the equation 7 would be  

                                    (𝐼𝑆)′ = 𝐼𝑆 𝑓(𝑟, 𝜏, 𝑎, 𝐼, 𝑆)                                                                    (8) 

Now we will neglect 𝑂(𝜏2) in equation 4 and 5 and substitute equation 8 in them  

                             
𝑑𝑆

𝑑𝑡
= −𝑟𝐼𝑆 − 𝑟𝜏𝐼𝑆 𝑓(𝑟, 𝜏, 𝑎, 𝐼, 𝑆)                                                              (9) 

                             
𝑑𝐼

𝑑𝑡
= 𝑟𝐼𝑆 − 𝑎𝐼 + 𝑟𝜏𝐼𝑆 𝑓(𝑟, 𝜏, 𝑎, 𝐼, 𝑆)                                                        (10) 

Now we would combine equation 9 and equation 10 by dividing 
𝑑𝐼

𝑑𝑡
 by 

𝑑𝑆

𝑑𝑡
 to have 

𝑑𝐼

𝑑𝑆
  

                              
𝑑𝐼

𝑑𝑆
=

𝑟𝐼𝑆−𝑎𝐼+𝜏𝑟𝐼𝑆𝑓

−𝑟𝐼𝑆(1+𝜏𝑓)
                                                                                     (11) 

As we mentioned 𝜏 is a small parameter, so we can ignore 𝜏2, so we can make another expansion of 

the term (1 + 𝜏𝑓)−1 , by polynomial expansion, geometric series or Taylor expansion, which says if one 

plus something small can be approximated to: 

                              (1 + 𝜏𝑓)−1 ≈ 1 − 𝜏𝑓 + 𝑂(𝜏2)                                                            (12) 

Now we can substitute equation 12 in equation 11, so: 

                              
𝑑𝐼

𝑑𝑆
=

−1

𝑟𝐼𝑆
(𝑟𝐼𝑆 − 𝑎𝐼 + 𝜏𝑟𝐼𝑆𝑓 − 𝜏𝑟𝐼𝑆𝑓 + 𝑎𝜏𝐼𝑓) + 𝑂(𝜏2)                      (13) 

So, we can rewrite equation 13 as the following  

                                               
𝑑𝐼

𝑑𝑆
=

−(𝑟𝐼𝑆−𝑎𝐼)

𝑟𝐼𝑆
+ 𝑂(𝑎𝜏, 𝜏2)                                                 (14) 

According to [19], the data where as shown in Fig. 3, so we need to keep hard working to build a 

mathematical model that govern the speed of pandemic, so we can be ready to the next round when disease 

hits again  

 

 
Fig. 3. Real-World Data SIR Model for COVID-19 Dynamics in Russia 

Рис. 3. Модель SIR с реальными данными о динамике распространения COVID-19 в России 

 

CONCLUSION 

The equation 14 is the exact to that in SIR model without incubation period except the term 𝑂(𝑎𝜏, 𝜏2), 
so we can conclude that our model remains unchanged as we can neglect the terms of 𝑂(𝑎𝜏, 𝜏2), and that 

explains why the shape is not changed when incubation time is changed and just is shifted in time. That is 

mean in practice, even if we include the incubation time in SIR model, the structure and the behavior of the 

system will actually be the same as the basic SIR model. For a disease like COVID19 where incubation 
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period is indeed is small, it is very reasonable to ignore the term 𝑂(𝑎𝜏, 𝜏2). This tells us when we trying to 

model a pandemic, and trying to understand the spread of the disease. we can simplify our model and we 

don’t need to worry about the incubation period because the dynamics would be the same. what we can see 

the contact ratio is the key parameter to control the dynamic of the disease.  
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