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Abstract

The SIP model is a fundamental tool for simulating epidemic dynamics, but it has limitations in
accurately representing real-world scenarios. This paper presents a comprehensive review and
mathematical analysis of the SIR model when incorporating the incubation period of infectious
diseases. We discuss the significance of the incubation period in disease transmission dynamics
and explore the modifications made to the SIR model to integrate this parameter. By analyzing the
mathematical equations governing the modified SIR model, we demonstrate its enhanced accuracy
in predicting disease spread patterns and its implications for public health interventions. Our
findings evaluated the importance of incorporating the incubation period into epidemic models.
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AHHOTaIMA

Mopnens SIR sBnsiercs GyHIaMEHTAIEHBIM UHCTPYMEHTOM JIJISL MOJCTHUPOBAHUSI MUIEMHUICCKOM
JUHAMUKH, HO Y HEE €CTh OTPAHUYEHUS B TOYHOM MPEACTABICHUH PEaJIbHBIX ClieHapueB. B nanHoi
CTaThe TPEICTaBICHO BCECTOPOHHEE 0030PHOE U MATEMATHUECKOE aHATUTHYECKOE NCCIICTIOBAHHE
Mozaenu SIR mpu BKIIIOUEHHM WHKYOAIIMOHHOTO Tepuoja WH(EKIIMOHHBIX 3a0osieBaHUN. MbI
o0CyKJaeM 3HAYUMOCTh HWHKYOAI[MOHHOT'O TEpHoJa B AMHAMUKE Iepeavyd 3a0oJeBaHUS H
uccienyeM MoauduKanuy, BHECEHHbIE B Monaenb SIR anms wHTErpammm >TOro mapameTpa.
AHanmu3upys MaTeMaTHYeCKHWe YpaBHEHHS, OIpenessionie W3MEHEeHHYI0 Monaenb SIR, Mo
JIEMOHCTPUPYEM €€ YJIYUYUIEHHYI0O TOYHOCTh B MPOTHO3MPOBAHUHU MATTEPHOB PaCIpPOCTPAHEHUS
0oJe3HM W ee BIUSIHWE HAa MeEphl OOIIECTBEHHOTO 31paBOOXpaHeHUs. Harmm pe3ynbraTsl
MTOTYEPKUBAIOT BAKHOCTh BKIIFOYCHHS WHKYOAITMOHHOTO MTEPHOAA B STTHUIEMUIECKIE MOJIEIIH.
KuaroueBsle cioBa: monens SIR; HHKyOaImoHHBIH TIEpUO/T; dTHISMHUYECKas THHAMHUKA; TTepeaada
3a00JIeBaHUs; MATEMAaTUIECKOE MOJICITUPOBAHUE
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INTRODUCTION

The original SIR model is a fundamental mathematical framework used to study the dynamics
of infectious diseases within populations. It divides the population into three compartments based on their
disease status: Susceptible (S), Infectious (I), and Removed (R). Here's a focused and informative
explanation:

The Susceptible (S) compartment represents individuals who are susceptible to the disease and can
become infected upon contact with infectious individuals. The Infectious (I) compartment consists
of individuals who are currently infected and capable of transmitting the disease to susceptible individuals.
The Removed (R) compartment includes individuals who have either recovered from the disease and gained
immunity or have been removed from the population due to death or other reasons. The dynamics of the
SIR model are governed by a set of ordinary differential equations (ODES) that describe how the number
of individuals in each compartment changes over time. These equations capture the flow of individuals
between compartments based on rates of infection, recovery, and removal.

In Fig. 1 The incubation period refers to the duration between exposure to a pathogen and the onset
of symptoms in an infected individual. It represents the time taken for the pathogen to multiply and cause
detectable signs of illness. In contrast, the latent period specifically denotes the time between infection and
the individual becoming infectious to others.

Infection
Incubation period Disease
Time
! Latent period Period of communicability

Fig. 1. Incubation Period Explained
Puc. 1. InkyOanimoHHbIN NIEpUOJT — MOSICHEHHUE

Mathematically, the differential equations for the SIR model can be represented as follows:

dt/dS = —BSI
dt/dl = BSI —yI (1)
dt/dR = yI

Where:

S,1, and R represent the numbers of individuals in the Susceptible, Infectious, and Removed
compartments, respectively.

N is the total population size (N =S + I + R).

B is the transmission rate, representing the probability of disease transmission from an infectious
individual to a susceptible individual per unit time.

y is the recovery rate, representing the rate at which infectious individuals recover and move to the
Removed compartment.
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LITERATURE REVIEW

The SIR model, commonly used for simulating epidemics, has several limitations. Firstly, accurately
inferring model parameters based on early, noisy observations are problematic, limiting its practical
identifiability [9]. Secondly, the SIR model assumes equal susceptibility and connectivity within age bands,
leading to overestimation of infection rates [11]. Additionally, the model fails to consider the role of
nosocomial transmission in overloading health systems, resulting in inaccurate predictions of critical care
requirements [8]. Furthermore, the SIR model does not account for heterogeneity in contact rates, which
affects the stability of the epidemic spread in real-world scenarios [2].

The incubation period of infectious diseases plays a crucial role in understanding their dynamics.
Differences in the incubation period can determine the predictability and spread patterns of diseases [3].
Diseases with longer incubation periods, such as Ebola, tend to have less predictable spread and more long-
distance sparking events|[3]

Incorporating the incubation period into the SIR model enhances disease spread modeling accuracy
by accounting for the delay between infection and detection [14]. Understanding the incubation period aids
in designing effective quarantine and isolation durations, impacting disease control strategies. Moreover,
considering the incubation period's influence on social distancing measures reveals insights into optimal
control strategies, emphasizing timing and duration for effective disease containment [12].

Incorporating the incubation period into the SIR model is epidemiologically significant as it has
implications for disease forecasting, intervention planning, and public health policy. The length of the
incubation period is strongly correlated with disease severity, and accurately estimating the incubation time
ranges can help establish appropriate quarantine durations, aiding in controlling future
outbreaks[10].Validation studies have been conducted to assess the accuracy of the modified SIR model
with an incubation period in simulating real-world disease outbreaks. These studies have demonstrated the
ability of the modified SIR model to accurately predict the number of beds needed during the early stages
of an epidemic, such as the COVID-19 outbreak in Wuhan[6,7].

The modified SIR model is compared with the classical SIR model in terms of disease dynamics and
control strategies. The modified model incorporates network structure centrality measures and illness
factors, while the classical model does not consider these factors. The modified model is found to perform
better in terms of lowering the final death ratio in the community [1]. Sensitivity analyses have been
conducted to assess the impact of varying the duration of the incubation period on model outcomes in
several studies. Sun discusses the importance of good practice sensitivity analysis, including the
consideration of robustness to choices in methods and assumptions, and the need for convergence of
sensitivity metrics[16].

The incorporation of the incubation period into the SIR model has yielded valuable insights for
specific infectious diseases such as COVID-19. Liu et al. quantified data irregularity using approximate
entropy and found higher volatility in the U.S., Italy, and India compared to China 5] . Computational
methods used to simulate the modified SIR model with an incubation period involve agent-based modeling
(ABM) and numerical integration techniques such as Euler's method [17]. The SIR model for incorporating
the incubation period has limitations and assumptions. One limitation is the assumption of homogeneous
mixing, which assumes that individuals have an equal chance of coming into contact with each other. This
assumption may not hold in real-world scenarios where individuals have different contact patterns. Another
limitation is the assumption of constant transmission rates, which assumes that the rate at which individuals
become infected remains constant over time[13].

Future research in infectious disease modeling should focus on refining the modified SIR model by
incorporating additional factors and integrating real-time data sources. This will enhance the accuracy and
predictive power of the model, allowing for more effective public health decision-making and outbreak
response strategies. Incorporating the incubation period into the SIR model has important implications for
public health. It can provide valuable insights into the timing and progression of outbreaks, enabling the
development of targeted control measures [6,7]. Numerous lectures, hosted by the Oxford University
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Department for Continuing Education, have explored the dynamics of the SIR model, which researchers
have utilized in this paper [18].

MODEL DEVELOPMENT

Now, we make an additional assumption to equation 1: the disease has an incubation period equal to
7. This means that a susceptible individual who comes into contact with an infective and contracts the
disease would not actually move to the infectious category for a certain period of time labeled 7. We can
think of this as someone catching the disease from an infectious person, but taking some time before
displaying symptoms and therefore becoming infectious to others. What this means for our model is that
variables I and S, which were originally functions of time t, will now become functions of (t-7). Our system
would appear as follows in equation 2

( %z—rS(t—r)I(t—r)
S=rS-It-1-at) . @
= =al()

As noticed, al hasn’t been changed to al(t — t) because the assumption of the incubation period
applies only when transitioning from S to . The movement from | to R, representing the recovery phase,
does not incorporate the delay period. In the context of COVID-19, the incubation period is believed to be
around five days, according to the WHO.

In Fig. 2, after simulation of equation 2, we noticed that the entire graph shifts in time as you increase
the incubation period above zero, while the dynamics remain fundamentally the same.

r=1.19 a=0.35 =0

A

r=1.19 a=0.3 =0

Fig. 2. Classical SIR Model vs Incubation Period Enabled SIR Model
Puc. 2. Kimaccnueckas moaenb SIR u mozens SIR ¢ BKITTOUeHHBIM
I/IHKy6aI_II/IOHHBIM nepunoaom

In the context of COVID-19, the incubation period is relatively short compared to the timescale of
the disease. This holds true for any disease modeled using the SIR method. Therefore, we have a system of
equations containing a small parameter, suggesting the use of Taylor expansion. In other words, we aim to
simplify system equation3 2 into a more manageable form. Thus, we expand equation 1 around t, assuming
that t is a small value.

rS(t — DIt — 1) = rSO)I(t) + rr(S)’ + 0(t?) (3)

What would we do next is take our approximation in equation 3 and substitute it into equations system

in 2.

Zj = —rS(OIL) — rr(IS) + 0(x?) (4)
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dal

— =7IS—al +7r7(1S)' + 0(z%) ®)
= =a (6)

The 7 term which was originally inside our unknown variables through Taylor expansion
approximation for a small T we’ve been write it Infront of something we can now workout. the next step
involves pretty heavy algebra which is take (1S5)’ term and simplify them into something more manageable.
we would do this by using the fact that equations in 2 is originally has S’ and I’, they can be substituted for

S” and I’ and rearrange to get a simplified expression for (IS)’
IS(r(S—D-a)

(IS) = 1-rTt(I-S) (7)
(r(s-D-a) ;
We can call Fa——— asaf(r,t,a,1,S), so the equation 7 would be
(s) =1sf(r,t,a,1,5) (8)
Now we will neglect O(z?) in equation 4 and 5 and substitute equation 8 in them
% =—rlS—rtlS f(r,t,a,1,5S) 9
% =riS—al +rtlS f(r,7,a,1,5) (10)

Now we would combine equation 9 and equation 10 by dividing % by % to have %
ar _ riS—al+trisf
s~ -rIS(1+tf) (11)
As we mentioned 7 is a small parameter, so we can ignore 2, so we can make another expansion of
the term (1 + /)1, by polynomial expansion, geometric series or Taylor expansion, which says if one
plus something small can be approximated to:

(1+1f) t=1—1f +0(1? (12)
Now we can substitute equation 12 in equation 11, so:
S == (vIS — al +=ISf — ISE + atlf) + 0(1?) (13)
So, we can rewrite equation 13 as the following
S =04 0(ar, 1) (14)

According to [19], the data where as shown in Fig. 3, so we need to keep hard working to build a
mathematical model that govern the speed of pandemic, so we can be ready to the next round when disease
hits again

Fig. 3. Real-World Data SIR Model for COVID-19 Dynamics in Russia
Puc. 3. Mogens SIR ¢ peanbHbIME JaHHBIMHA O quHaMUKe pactpoctpaneHuss COVID-19 B Poccun

CONCLUSION
The equation 14 is the exact to that in SIR model without incubation period except the term 0 (at, t2),
so we can conclude that our model remains unchanged as we can neglect the terms of 0 (art,7?), and that
explains why the shape is not changed when incubation time is changed and just is shifted in time. That is
mean in practice, even if we include the incubation time in SIR model, the structure and the behavior of the
system will actually be the same as the basic SIR model. For a disease like COVID19 where incubation
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period is indeed is small, it is very reasonable to ignore the term O(art, t2). This tells us when we trying to
model a pandemic, and trying to understand the spread of the disease. we can simplify our model and we
don’t need to worry about the incubation period because the dynamics would be the same. what we can see
the contact ratio is the key parameter to control the dynamic of the disease.
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